# **Answers for 12.1**

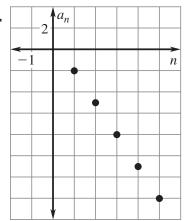
For use with pages 798-800

#### 12.1 Skill Practice

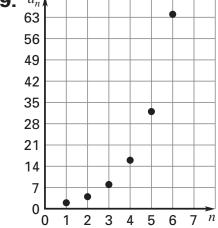
- 1. sigma notation
- **2.** A sequence is a list of numbers, and a series is the sum of the terms of a sequence.
- **3.** 3, 4, 5, 6, 7, 8
- **4.** 5, 4, 3, 2, 1, 0
- **5.** 1, 4, 9, 16, 25, 36
- **6.** 3, 10, 29, 66, 127, 218
- **7.** 1, 4, 16, 64, 256, 1024
- **8.** -1, -4, -9, -16, -25, -36
- **9.** -4, -1, 4, 11, 20, 31
- **10.** 16, 25, 36, 49, 64, 81
- **11.** -4, -2,  $-\frac{4}{3}$ , -1,  $-\frac{4}{5}$ ,  $-\frac{2}{3}$
- **12.**  $3, \frac{3}{2}, 1, \frac{3}{4}, \frac{3}{5}, \frac{1}{2}$
- **13.**  $\frac{2}{3}$ , 1,  $\frac{6}{5}$ ,  $\frac{4}{3}$ ,  $\frac{10}{7}$ ,  $\frac{3}{2}$
- **14.**  $1, \frac{2}{3}, \frac{3}{5}, \frac{4}{7}, \frac{5}{9}, \frac{6}{11}$
- **15.** You can write the terms as 5(1) 4, 5(2) 4, 5(3) 4, 5(4) 4,  $a_5 = 21$ ,  $a_n = 5n 4$ .
- **16.** You can write the terms as  $2^{1-1}$ ,  $2^{2-1}$ ,  $2^{3-1}$ ,  $2^{4-1}$ ,  $a_5 = 16$ ,  $a_n = 2^{n-1}$ .

- **17.** You can write the terms as  $(-1)^1(4 \cdot 1), (-1)^2(4 \cdot 2), (-1)^3(4 \cdot 3), (-1)^4(4 \cdot 4), a_5 = -20, a_n = (-1)^n(4 \cdot n).$
- **18.** You can write the terms as  $1^3 + 1$ ,  $2^3 + 1$ ,  $3^3 + 1$ ,  $4^3 + 1$ ,  $a_5 = 126$ ,  $a_n = n^3 + 1$ .
- **19.** You can write the terms as  $\frac{2}{3(1)}$ ,  $\frac{2}{3(2)}$ ,  $\frac{2}{3(3)}$ ,  $\frac{2}{3(4)}$ ,  $a_5 = \frac{2}{15}$ ,  $a_n = \frac{2}{3n}$ .
- **20.** You can write the terms as  $\frac{2(1)}{1+2}$ ,  $\frac{2(2)}{2+2}$ ,  $\frac{2(3)}{3+2}$ ,  $\frac{2(4)}{4+2}$ ,  $a_5 = \frac{10}{7}$ ,  $a_n = \frac{2n}{n+2}$ .
- **21.** You can write the terms as  $\frac{1}{4}$ ,  $\frac{2}{4}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ ,  $a_6 = \frac{6}{4}$ ,  $a_n = \frac{n}{4}$ .
- **22.** You can write the terms as

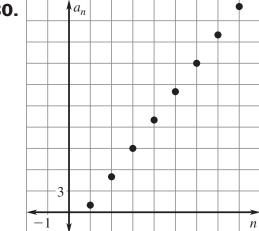
$$\frac{2(1)-1}{1(10)}, \frac{2(2)-1}{2(10)}, \frac{2(3)-1}{3(10)},$$


$$\frac{2(4)-1}{4(10)}, a_5 = \frac{9}{50}, a_n = \frac{2n-1}{10n}.$$

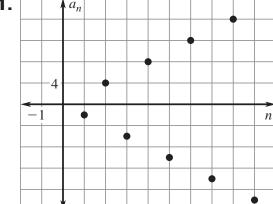
**23.** You can write the terms as 0.7(1) + 2.4, 0.7(2) + 2.4, 0.7(3) + 2.4, 0.7(4) + 2.4,  $a_5 = 5.9$ ,  $a_n = 0.7n + 2.4$ .


# **Answers for 12.1** continued

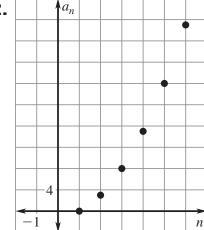
For use with pages 798-800


- **24.** You can write the terms as 5.8 - 1.6(1), 5.8 - 1.6(2), 5.8 - 1.6(3), 5.8 - 1.6(4), $5.8 - 1.6(5), a_6 = -3.8,$  $a_n = 5.8 - 1.6n$ .
- **25.** You can write the terms as  $1^2 + 0.2, 2^2 + 0.2, 3^2 + 0.2,$  $4^{2} + 0.2, a_{5} = 25.2,$   $a_{n} = n^{2} + 0.2.$
- **26.** You can write the terms as 7.8(1) + 1.2, 7.8(2) + 1.2,7.8(3) + 1.2, 7.8(4) + 1.2, $a_5 = 40.2, a_n = 7.8n + 1.2.$
- **27.** D
- 28.




**29.** *a*<sub>n</sub>

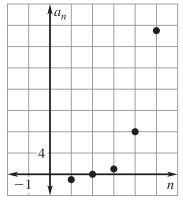



30.

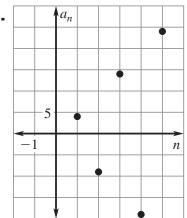


31.

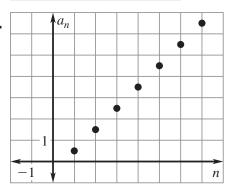



**32.** 

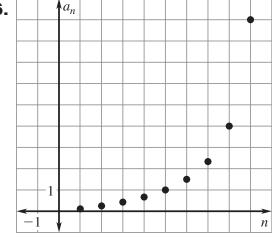



# Answers for 12.1 continued

For use with pages 798-800


33.




34.



35.



36.



**37.** 
$$\sum_{i=1}^{5} 3i + 4$$

**37.** 
$$\sum_{i=1}^{5} 3i + 4$$
 **38.**  $\sum_{i=1}^{5} 6i + 4$  **39.**  $\sum_{i=1}^{\infty} 2i - 3$  **40.**  $\sum_{i=1}^{\infty} (-2)^i$ 

**39.** 
$$\sum_{i=1}^{\infty} 2i - 3i$$

**40.** 
$$\sum_{i=1}^{\infty} (-2)^{i}$$

**41.** 
$$\sum_{i=1}^{\infty} 7i - 4$$
 **42.**  $\sum_{i=1}^{4} \frac{1}{3^i}$ 

**42.** 
$$\sum_{i=1}^{4} \frac{1}{3^i}$$

**43.** 
$$\sum_{i=1}^{7} \frac{i}{3+i}$$

**43.** 
$$\sum_{i=1}^{7} \frac{i}{3+i}$$
 **44.**  $\sum_{i=1}^{\infty} i^2 - 2$ 

**51.** 
$$\frac{761}{140}$$
 **52.**  $\frac{617}{140}$ 

**52.** 
$$\frac{617}{140}$$

$$3 + 5 + 7 + 9 + 11 + 13 = 48$$
.

**59.** true; 
$$\sum_{i=1}^{n} ka_i = (ka_1 + ka_2 + ka_3 + \dots + ka_n) = k(a_1 + a_2 + a_3 + \dots + a_n) = k \sum_{i=1}^{n} a_i$$

**60.** true; 
$$\sum_{i=1}^{n} (a_i + b_i) =$$

$$(a_1 + b_1) + (a_2 + b_2) +$$

$$(a_3 + b_3) + \dots + (a_n + b_n) =$$

$$(a_1 + a_2 + a_3 + \dots + a_n) +$$

$$(b_1 + b_2 + b_3 + \dots + b_n) =$$

$$\sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

**61.** False. Sample answer:

$$\sum_{i=1}^{4} (2i)(-4i) \neq \left(\sum_{i=1}^{4} 2i\right) \left(\sum_{i=1}^{4} -4i\right)$$

**62.** False. Sample answer:

$$\sum_{i=1}^{4} (2x)^2 \neq \left(\sum_{i=1}^{4} 2x\right)^2$$

## 12.1 Problem Solving

- **63.**  $60^{\circ}$ ,  $90^{\circ}$ ,  $108^{\circ}$ ,  $120^{\circ}$ , about  $128.57^{\circ}$ ;  $T_n = 180(n-2)$ ;  $1800^{\circ}$
- **64.** \$50.50; 316 days. *Sample answer:* I used the special series formula for the sum of the first *n* positive integers and set it equal to 50,000 (since there are 50,000 pennies in \$500) and solved.

- **65.**  $a_n = 2^n 1$ ; 63 moves, 127 moves, 255 moves
- **66. a.** about 1.6 astronomical units
  - **b.** about 239,356,592 km

C. Mean distance from sun (a. u.) 28 24 20 16 12

Position of planet from sun

6

- **67. a.** 15 balls
  - **b.** 35 balls

2 3

- **c.** Except for layer 1, there are always more balls in the same layer of the square pyramid. The difference in the number of balls is  $\frac{n(n-1)}{2}$ .
- 68.

$$S_n = \frac{1}{2} \left( \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right)$$

#### 12.1 Mixed Review

- **69.** 5
- **70.** 4
- **71.** -2
- **72.**  $\frac{5}{4}$  **73.**  $\frac{3}{2}$

**78.** 
$$2\sqrt{10}$$

**79.** 
$$5\sqrt{2}$$

**80.** 
$$\sqrt{74}$$

**81.** 
$$\sqrt{34}$$

**82.** 
$$\sqrt{17}$$

**84.** 
$$\sqrt{17}$$

**85.** 
$$2\sqrt{13}$$

**86.** 
$$\sqrt{205}$$

- 1. common difference
- 2. An arithmetic sequence is a list of numbers that have the same common difference between consecutive terms. An arithmetic series is the sum of the terms of the arithmetic sequence.
- **3.** Arithmetic; there is a common difference of 3 between consecutive terms.
- **4.** Not arithmetic; there is not a common difference between consecutive terms.
- **5.** Arithmetic; there is a common difference of 9 between consecutive terms.
- **6.** Not arithmetic; there is not a common difference between consecutive terms.
- **7.** Arithmetic; there is a common difference of 0.5 between consecutive terms.
- **8.** Not arithmetic; there is not a common difference between consecutive terms.
- **9.** Not arithmetic; there is not a common difference between consecutive terms.

- **10.** Not arithmetic; there is not a common difference between consecutive terms.
- **11.** Arithmetic; there is a common difference of 1.5 between consecutive terms.

**12.** 
$$a_n = 3n - 2$$
; 58

**13.** 
$$a_n = -1 + 6n$$
; 119

**14.** 
$$a_n = -5 + 13n$$
; 255

**15.** 
$$a_n = -5 + 2n$$
; 35

**16.** 
$$a_n = 10 - 4n; -70$$

**17.** 
$$a_n = 36 - 11n; -184$$

**18.** 
$$a_n = -\frac{2}{3} + \frac{2}{3}n; \frac{38}{3}$$

**19.** 
$$a_n = \frac{7}{3} - \frac{1}{3}n; -\frac{13}{3}$$

**20.** 
$$a_n = -0.6 + 2.1n$$
; 41.4

**21.** The equation for an arithmetic sequence is not correct;

$$a_n = a_1 + (n-1)d,$$
  
 $a_n = 37 + (n-1)(-13),$   
 $a_n = 50 - 13n.$ 

**22.** The terms were substituted into the wrong places;

$$37 = (n-1)(-13),$$

$$a_n = 50 - 13n$$
.

**23.** 
$$a_n = -28 + 5n$$

**24.** 
$$a_n = -70 + 9n$$

# Answers for 12.2 continued

For use with pages 806-809

**25.** 
$$a_n = 152 - 14n$$

**26.** 
$$a_n = 81 - 7n$$

**27.** 
$$a_n = -5 + \frac{7}{2}n$$

**28.** 
$$a_n = 6 - \frac{1}{2}n$$

**30.** 
$$a_n = -5 + 9n$$

**31.** 
$$a_n = 9 + 5n$$

**32.** 
$$a_n = -11 + 3n$$

**33.** 
$$a_n = 22 - 4n$$

**34.** 
$$a_n = 17 + 8n$$

**35.** 
$$a_n = 13 + 2n$$

**36.** 
$$a_n = \frac{111}{5} - \frac{13}{5}n$$

**37.** 
$$a_n = \frac{15}{4} + \frac{9}{4}n$$

**38.** 
$$a_n = \frac{12}{5} - \frac{2}{5}n$$

**42.** 
$$-774$$

**49.** 
$$a_n = -3 + 5n$$

**50.** 
$$a_n = 2 - 3n$$

**51.** 
$$a_n = -1 - 2n$$

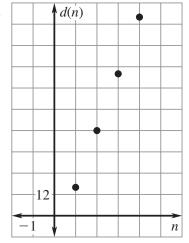
- **52.** Sample answer: The graph of  $a_n$ is just points at every integer n and the graph of f(x) is a line. Both graphs have the same rate of change between points.
- **53.** False. *Sample answer:* Doubling the common difference alone does not double the sum.

**54.** true; 
$$a + c = 2b$$

**61.** 22,500 **62.** 
$$\frac{2}{3}$$
,  $-\frac{8}{3}$ 

### 12.2 Problem Solving

**63.** a. 
$$a_n = 6n$$


**64.** 
$$a_n = 1 + 2n$$
; 63 band members

**65. a.** 
$$a_n = -4 + 8n$$

| n | d(n) |
|---|------|
| 1 | 16   |
| 2 | 48   |
| 3 | 80   |
| 4 | 112  |

**b.** 
$$a_n = -16 + 32n$$





**67.** \$100

#### 68. a.

| n | , | <i>d</i> <sub>n</sub> (in.) | ℓ <sub>η</sub> (in.) |
|---|---|-----------------------------|----------------------|
| 1 |   | 2                           | $2\pi$               |
| 2 |   | 2.0008                      | $2.0008\pi$          |
| 3 |   | 2.0016                      | $2.0016\pi$          |
| 4 |   | 2.0024                      | $2.0024\pi$          |

**b.** arithmetic;

$$a_n = [2 + 0.0008(n - 1)]\pi$$

**c.** 3750 times; 41,228.7 in.

d. Sample answer: \$2.10; a 5 inch roll costs \$1.50 which breaks down to \$.30 per inch, so a 7 inch roll should cost 7 • 0.3.

**69.** 
$$a_1 = \frac{2y}{n} - x$$

#### 12.2 Mixed Review

**73.** 
$$3\sqrt[3]{9}$$

**81.** 
$$\frac{1}{2}$$

**82.** 
$$6\frac{2}{3}$$
, 6, 6

**85.** about 
$$-1.29$$
,  $-2$ , none

- 1. common ratio
- **2.** When you divide consecutive terms you have the same ratio.
- **3.** Not geometric; there is no common ratio.
- **4.** Geometric; there is a common ratio of 4.
- **5.** Geometric; there is a common ratio of  $\frac{1}{6}$ .
- **6.** Geometric; there is a common ratio of 2.
- **7.** Not geometric; there is no common ratio.
- **8.** Not geometric; there is no common ratio.
- **9.** Geometric; there is a common ratio of  $\frac{1}{2}$ .
- **10.** Not geometric; there is no common ratio.
- **11.** Geometric; there is a common ratio of -3.
- **12.** Geometric; there is a common ratio of 3.
- **13.** Not geometric; there is no common ratio.

**14.** Not geometric; there is no common ratio.

**15.** 
$$a_n = (-4)^{n-1}$$
; 4096

**16.** 
$$a_n = 6(3)^{n-1}$$
; 4374

**17.** 
$$a_n = 4(6)^{n-1}$$
; 186,624

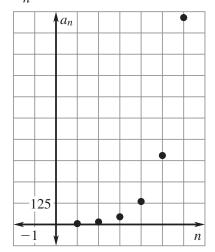
**18.** 
$$a_n = 7(-5)^{n-1}$$
; 109,375

**19.** 
$$a_n = 2\left(\frac{3}{4}\right)^{n-1}; \frac{729}{2048}$$

**20.** 
$$a_n = 3\left(-\frac{2}{5}\right)^{n-1}; \frac{192}{15,625}$$

**21.** 
$$a_n = 4\left(\frac{1}{2}\right)^{n-1}; \frac{1}{16}$$

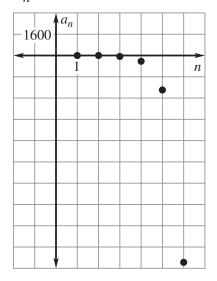
**22.** 
$$a_n = -0.3(-2)^{n-1}$$
; -19.2


**23.** 
$$a_n = -2(0.4)^{n-1}; -0.008192$$

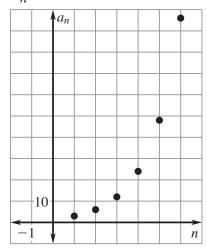
**24.** 
$$a_n = 7(-0.6)^{n-1}$$
; 0.326592

**25.** 
$$a_n = 5(-2.8)^{n-1}$$
; 2409.45152

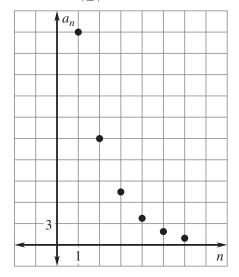
**26.** 
$$a_n = 120(1.5)^{n-1}$$
; 1366.875


**28.** 
$$a_n = 5(3)^{n-1}$$

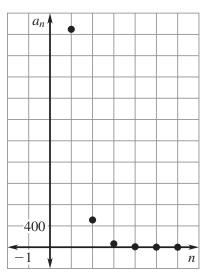



# **Answers for 12.3** continued

For use with pages 814–818

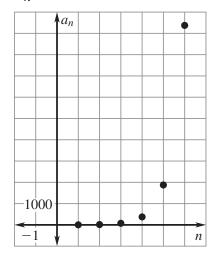

**29.** 
$$a_n = -2(6)^{n-1}$$



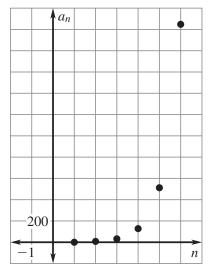

**30.** 
$$a_n = 3(2)^{n-1}$$



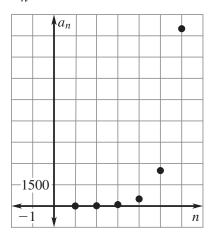
**31.** 
$$a_n = 30\left(\frac{1}{2}\right)^{n-1}$$




**32.** 
$$a_n = 4096 \left(\frac{1}{8}\right)^{n-1}$$







**34.** 
$$a_n = 3(5)^{n-1}$$



**35.** 
$$a_n = 2(4)^{n-1}$$



**36.** 
$$a_n = 4(5)^{n-1}$$



- **37.** The exponent should be n-1instead of *n*;  $a_n = 3(2)^{n-1}$ .
- **38.** r and  $a_1$  are switched around in the formula;  $a_n = a_1 r^{n-1}$ ,

$$a_n = 3(2)^{n-1}$$
.

**39.** 
$$a_n = 3(2)^{n-1}$$
  
**40.**  $a_n = 1(5)^{n-1}$ 

**40.** 
$$a_n = 1(5)^{n-1}$$

**41.** 
$$a_n = \left(-\frac{1}{4}\right)(4)^{n-1}$$

Answer Transparencies for Checking Homework

# Answers for 12.3 continued

For use with pages 814-818

**42.** 
$$a_n = \left(\frac{10}{9}\right)(3)^{n-1}$$

**43.** 
$$a_n = -80\left(\frac{1}{2}\right)^{n-1}$$

**44.** 
$$a_n = 6(-4)^{n-1}$$

**45.** 
$$a_n = 6(3)^{n-1}$$

**46.** 
$$a_n = 7\left(\frac{1}{2}\right)^{n-1}$$

**47.** 
$$a_n = \frac{32}{27} \left( \frac{3\sqrt[3]{12}}{4} \right)^{n-1}$$

- **48.** 5115
- **49.** 131,070
- **50.**  $\frac{255}{32}$  **51.**  $\frac{1365}{256}$
- **52.**  $\frac{527,345}{256}$  **53.** 838,861
- **54**. C
- **55.** *Sample answer:*

$$\frac{100}{31}$$
,  $\frac{200}{31}$ ,  $\frac{400}{31}$ ,  $\frac{800}{31}$ ,  $\frac{1600}{31}$ 

**56. a.** 
$$S_5 = \left(\frac{1-x^5}{1-x}\right)$$

**b.** 
$$S_4 = 3x \left( \frac{1 - 16x^8}{1 - 2x^2} \right)$$

## 12.3 Problem Solving

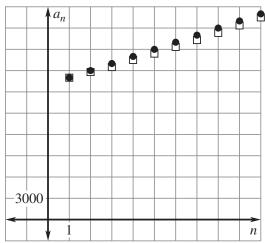
**57.** a. 
$$a_n = 5(2)^{n-1}$$

**b.** 75 skydivers

**58. a.** 
$$a_n = 32\left(\frac{1}{2}\right)^{n-1}$$
;  $1 \le n \le 6$ 

**b.** 63 games

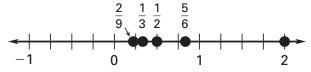
**59.** a. 
$$a_n = 1024 \left(\frac{1}{2}\right)^{n-1}$$


**b.** 11. Sample answer: On the 11th pass, there is only 1 term to choose from so it must be the answer.

**60. a.** 
$$a_n = (8)^{n-1}$$
; 2,396,745 squares

**b.** 
$$a_n = \frac{8}{9} \left(\frac{8}{9}\right)^{n-1}$$
; about 0.2433

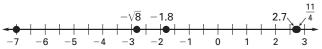
**61. a.** 
$$a_n = 19,000 + 1000n$$
, arithmetic;  $b_n = 20,000(1.04)^{n-1}$ , geometric






- **c.** Company A: \$590,000; Company B: about \$595,562
- **d.** 19 yr

#### 12.3 Mixed Review


63.



64.



**65**.



**66.** 
$$-\frac{5}{9}$$

**67.** 
$$\frac{7}{10}$$

**68.** 
$$\frac{8}{13}$$

## **12.1–12.3 Mixed Review of Problem Solving**

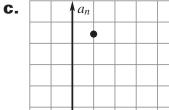
**1. a.** 
$$a_n = 45,000(1.035)^{n-1}$$

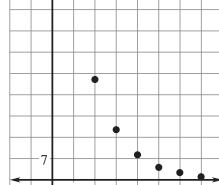
**2.** a. 
$$a_n = (2n - 1)\pi$$

**b.** 
$$\sum_{i=2}^{n} (2i-1)\pi$$

**c.** 
$$\pi$$
,  $4\pi$ ,  $16\pi$ ; it quadruples the area.

- **3.** 2 + 4n; arranging the tables with their short ends together creates room for 4 more chairs with each table that is added, where arranging the tables with their long ends together creates room for 2 more chairs with each table that is added.
- **4.** Sample answer:  $\sum_{i=1}^{8} \frac{19}{14} + \frac{23}{14}i$
- **5.** 105 pieces of chalk;


| 1          | 0          | 5                                       |
|------------|------------|-----------------------------------------|
| $\bigcirc$ | $\bigcirc$ |                                         |
| $\odot$    | $\odot$    | $\odot$                                 |
| 0          | 0          | 0                                       |
| 1          | 1          | 1                                       |
| 2          | 2          | 2                                       |
| 3          | 3          | 3                                       |
| 4          | 4          | 4                                       |
| 5          | 5          | 5                                       |
| 6          | 6          | 6                                       |
| 7          | 7          | 7                                       |
| 8          | 8          | 8                                       |
| 9          | 9          | 9                                       |
|            |            | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |


**6.**  $a_n = 2 + 7n$ ; 72 in.; change the formula to be  $a_n = 2 + 7(n-1)$ 

Answer Transparencies for Checking Homework

**7. a.** Geometric; there is a constant ratio of  $\frac{1}{2}$  between terms.

**b.** 
$$a_n = 66 \left(\frac{1}{2}\right)^{n-1}$$





exponential decay

- **d.** 14 h
- **8.** *Sample answer:* 3, 6, 9, 12, 15;

$$\frac{45}{31}$$
,  $\frac{90}{31}$ ,  $\frac{180}{31}$ ,  $\frac{360}{31}$ ,  $\frac{720}{31}$