12.2 Analyze Arithmetic Sequences and Series

EXAMPLE 1 Identify arithmetic sequences

Tell whether the sequence is arithmetic.

EXAMPLE 2 Write a rule for the *n*th term

Write a rule for the nth term of the sequence. Then find a_{15} .

b.
$$60, 52, 44, 36, ...$$

60 52 44 36

-8 -8 - 8

$$0_{\Lambda} = 60 + (n-1)(-8)$$

$$a_{15} = 60 + (15-1)(-8)$$

$$= 60 + (14)(-8)$$

$$= 60 - 112$$

$$= -52$$

EXAMPLE 3 Write a rule given a term and common difference

One term of an arithmetic sequence is $a_{19} = 48$. The common difference is d = 3.

a. Write a rule for the *n*th term.

a. Write a rule for the *n*th
$$a_{19} = 48$$
 $d = 3$
 $a_{19} = 48$ $a_{19} = 48$
 $a_{19} = 48$ $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{19} = 48$
 $a_{$

EXAMPLE 4 Write a rule given two terms

Two terms of an arithmetic sequence are $a_8=21$ and $a_{27}=97$. Find a rule for the nth term.

$$d = \frac{97-21}{27-8} = \frac{76}{19} = \frac{1}{19}$$

$$\alpha_{n} = \alpha_{1} + (n-1)(d)$$

$$\alpha_{1} = \alpha_{1} + (8-1)(4)$$

$$\alpha_{2} = \alpha_{1} + (8-1)(4)$$

$$\alpha_{3} = \alpha_{1} + \alpha_{3} = \frac{76}{19}$$

$$\alpha_{4} = \alpha_{1} + \alpha_{2} = \frac{1}{19}$$

$$\alpha_{5} = \alpha_{1} + \alpha_{2} = \frac{1}{19}$$

$$\alpha_{7} = \alpha_{1} + \alpha_{1} = \frac{1}{19}$$

EXAMPLE 4 Write a rule given two terms

Write a rule for the nth term of the arithmetic sequence. Then find a_{20} .

$$d = \frac{71 - 26}{16 - 7} = \frac{45}{9} = 5$$

$$d = 5$$

$$0 = 0 + (n - 1)(4)$$

$$26 = 0 + (7 - 1)(5)$$

$$26 = 0 + 30$$

$$45 = 5$$

$$26 = 0 + 30$$

IDENTIFYING ARITHMETIC SEQUENCES Tell whether the sequence is arithmetic. *Explain* why or why not.

11.
$$-\frac{5}{2}$$
, -1 , $\frac{1}{2}$, 2 , $\frac{7}{2}$, ...

WRITING RULES Write a rule for the nth term of the arithmetic sequence. Then find a_{20} .

19.
$$2, \frac{5}{3}, \frac{4}{3}, 1, \frac{2}{3}, \dots$$

$$\frac{6}{3}, \frac{5}{3}, \frac{4}{3}, \frac{2}{3}, \dots$$

$$\frac{-1}{3}, \frac{1}{3}, \frac{2}{3}, \dots$$

$$q_1 = 2 + (n-1)(\frac{1}{3})$$

$$a_{30} = \frac{3}{5} = \frac{3}{$$

WRITING RULES Write a rule for the *n*th term of the arithmetic sequence. Then graph the first six terms of the sequence.

23.
$$a_{16} = 52, d = 5$$

$$A_{1} = \alpha_{1} + (n-1)(d)$$

$$5 = \alpha_{1} + (16-1)(5)$$

$$5 = \alpha_{1} + 75$$

$$-23 = \alpha_{1}$$

$$\alpha_{1} = -23 + (n-1)(5)$$

WRITING RULES Write a rule for the *n*th term of the arithmetic sequence that has the two given terms.

as the two given terms.

$$36 \cdot a_7 = 4, a_{12} = -9$$

$$d = \frac{-9 - 4}{12 - 7} = \frac{-13}{5}$$

$$\alpha_{N} = \alpha_{1} + (N - 1)(d)$$

$$4 = \alpha_{1} + (7 - 1)(-\frac{13}{5})$$

$$4 = \alpha_{1} + \frac{-78}{5}$$

$$\frac{20}{5} + \frac{78}{5} = \alpha_{1}$$

$$\alpha_{1} = \frac{98}{5}$$

USING GRAPHS Write a rule for the sequence whose graph is shown.

$$q = 3$$
 $q = 0, +(n-1)(d)$
 $q = 3$
 $q = 2 + (n-1)(s)$

STOP

Work on 12.2 pg 806 3-37odd

12.3 Analyze Geometric Sequences and Series

EXAMPLE 1 Identify geometric sequences

Tell whether the sequence is geometric.

4, 10, 18, 28, 40, ...

$$4r = 10$$
 $r = \frac{10}{4} = \frac{5}{3}$
 $r = \frac{135}{625} = \frac{1}{5}$
 $r = \frac{8}{4} = -2$
 $r = \frac{25}{125} = \frac{1}{5}$
 $r = \frac{-16}{8} = -2$
 $r = \frac{5}{125} = \frac{1}{5}$
 $r = \frac{1}{8} = -2$
 $r = \frac{1}{8} = -2$
 $r = \frac{1}{8} = -2$

EXAMPLE 2 Write a rule for the *n*th term

Write a rule for the *n*th term of the sequence. Then find a_7 .

b.
$$152, -76, 38, -19, ...$$

$$\Gamma = \frac{-76}{152} = -\frac{1}{2}$$

$$\Gamma = \frac{38}{-76} = -\frac{1}{2}$$

$$\Gamma =$$

EXAMPLE 3 Write a rule given a term and common ratio

One term of a geometric sequence is $a_4=12$. The common ratio is r=2.

a. Write a rule for the nth term.

$$a_{n} = \underline{\alpha}_{1} \cdot \underline{c}_{n-1}$$

$$\frac{12}{8} = 9$$

b. Graph the sequence.

12.3 Analyze Geometric Sequences and Series

EXAMPLE 4 Write a rule given two terms

Two terms of a geometric sequence are $a_3 = -48$ and $a_6 = 3072$. Find a rule for the nth term.

EXAMPLE 4 Write a rule given two terms

Write a rule for the *n*th term of the geometric sequence. Then find a_8 .

Write a rule for the *n*th term of the geometric sequence. The
$$a_2 = -12$$
 $a_4 = -3$

$$-12 \cdot (1 - 3) = -12 \cdot$$

IDENTIFYING GEOMETRIC SEQUENCES Tell whether the sequence is geometric. *Explain* why or why not.

7.
$$\frac{1}{2}$$
, 1, $\frac{3}{2}$, 2, $\frac{5}{2}$, ...

$$l = \frac{1}{3}$$

WRITING RULES Write a rule for the nth term of the geometric sequence. Then find a_7 .

15. 1, -4, 16, -64, . . .

WRITING RULES Write a rule for the *n*th term of the geometric sequence. Then graph the first six terms of the sequence.

33.
$$a_4 = -12, r = -\frac{1}{4}$$

$$a_{n} = a_{1} \cdot r^{n-1}$$

$$-12 = a_{1} \left(-\frac{1}{4}\right)^{3}$$

$$-12 = a_{1} \left(-\frac{1}{4}\right)^{3}$$

$$-a_{1} - 12 = a_{1} \left(-\frac{1}{4}\right)^{3}$$

$$-a_{2} - a_{3} - a_{4} - a_{5} - a_{5}$$

WRITING RULES Write a rule for the *n*th term of the geometric sequence that has the two given terms.

41.
$$a_1 = -\frac{1}{4}, a_4 = -16$$

$$Q_n = Q_1 r^{n-1}$$

$$-16 = (-\frac{1}{4})r^{4-1}$$

$$-4(-16) = -\frac{1}{4}r^3(-4)$$

$$r = 4$$

WRITING RULES Write a rule for the *n*th term of the geometric sequence that has the two given terms.

$$45 a_{4} = 162 a_{7} = 4374$$

$$a_{n} = a_{1} c^{n-1}$$

$$162 = a_{1}(3)$$

$$163 = a_{1}(3)$$

$$163 = a_{1}(3)$$

$$163 = a_{1}(3)$$

$$164 = a_{1}(3)$$

$$165 = a_{1}(3)$$

$$165 = a_{1}(3)$$

$$166 = a_{1}(3)$$

$$167 = a_{1}(3)$$

$$177 = a_{1}(3)$$

$$177 = a_{1}(3)$$

$$177 = a_{1}(3)$$

$$1$$