7.3 Use Functions Involving e Numbers: $\pi = 3.141592...$ $i = \sqrt{-1}$

Special Numbers:

$$\pi = 3.141592...$$

$$i = \sqrt{-1}$$

n	1	10	100	1,000	10,000	100,000	1,000,000
$\left(1+\frac{1}{n}\right)^n$	2	2,594	2,705.	2.717	2,718	2.718	2.718.
$\left(1+\frac{1}{l}\right)_{l}\left(1+\frac{10}{l}\right)_{l}o\left(1+\frac{100}{l}\right)_{l}oo$							
$(1+\frac{1}{6})^{6} = 2.718281828$							

EXAMPLE 1 Simplify natural base expressions

Simplify the expression.

a.
$$e^2 \cdot e^5$$

c.
$$(5e^{-3x})^2$$
 $5^2 e^{-(3x)(2x)}$
 $25 e^{-(6x)}$
 $\frac{25}{6^{(6x)}}$

EXAMPLE 2 Evaluate natural base expressions

Use a calculator to evaluate the expression.

a.
$$e^{4}$$
 e^{X} 4 = .54.598
 e^{A} 4 = 54.598
 e^{A} 4 = 54.598

EXAMPLE 3 Graph natural base functions

Graph the function. State the domain and range.

a.
$$y = 3e^{0.25x}$$

b.
$$y = e^{-0.75(x-2)} + 1$$

Compound Interest Formula

$$A = P\left(1 + \frac{\pi}{n}\right) \qquad \left(1 + \frac{\pi}{n}\right) = e$$

Continuously Compounded Interest Formula

EXAMPLE 5 Model continuously compounded interest

FINANCE You deposit \$4000 in an account that pays 6% annual interest compounded continuously. What is the balance after 1 year?