- 1. half-plane
- **2.** *Sample answer:* The boundary line of an inequality is the same line as the linear equation.
- **3.** solution, not a solution
- **4.** not a solution, solution
- **5.** solution, solution
- **6.** solution, not a solution

7.

8.

Answers for 2.8 continued

For use with pages 135–139

14.

16.

17.

18.

19. The boundary line should be a dashed line.

20. The other side of the boundary line should be shaded.

21. C

Answers for 2.8 continued

For use with pages 135–139

24.

25.

26.

- **28.** D
- **29.** solution, not a solution
- **30.** not a solution, solution
- **31.** solution, not a solution
- **32.** not a solution, solution

33.

35.

36.

- **39.** *Sample answer:* y > x + 3
- **40.** *Sample answer:* Testing a point on the boundary line would not tell you which side of the line the solutions are on.
- **41.** $y > -\frac{3}{5}x + 3$; pick two points on the boundary line to find the slope and then use the point-slope form of an equation to find the equation. The boundary line is dashed, so the inequality does not include points on the boundary. Then choose a point to determine which inequality sign to use. Sample answer: You and your sister want to spend at least \$15 on your little brother's birthday. You want to buy him some race cars that cost \$3 each and some building block sets that cost \$5 each.
- **42.** Sample answer:

x > |y - 9| + 5; I chose a point on the graph and found another inequality that opened horizontally and had a vertex of the point I chose.

43.
$$0.03x + 0.06y \le 20$$

44.
$$12x + 18y \le 4800$$

Sample answer: 12 large and 382 small, 120 large and 220 small, 0 large and 400 small

45.
$$1.5x + 2.5y \le 75$$

$$y \le 15.6 \text{ yd}$$

46.
$$15x + 10y \ge 1800$$

You would have to take the shirt sales, 15x, times 0.4 and the cap sales, 10y, times 0.3. The total sales, 1800, would change to a total of 600.

47. a.
$$11x + 26y \le 120$$

b. Sample answer: 2 days canoeing and 5 days biking, 3 days canoeing and 2 days biking, 2 days canoeing and 2 days biking

c.
$$11x + 26y \le 96$$

Sample answer: 1 day canoeing and 3 days biking, 4 days canoeing and 2 days biking, 2 days canoeing and 2 days biking

48. a. about 48.3 in.³, about 62.8 in.³, about 942 in.³

b.
$$48.3x + 62.8y \le 942$$

c. about 0.209 gal, about 0.272 gal, about 4.08 gal; $0.209x + 0.272y \le 4.08$

48. d.

The graphs are identical. Sample answer: Converting the volume does not change the number of times each container must be filled.

49. a. no

b.
$$d > \frac{5}{3}h$$

2.8 Mixed Review

50.
$$y = 4x + 11$$

51.
$$y = -15x + 60$$

52.

53.

54.

55.

56.

59.
$$y = -3x + 16$$

60.
$$y = \frac{6}{5}x + 2$$

61.
$$y = -\frac{5}{3}x + \frac{17}{3}$$

2.5–2.8 Mixed Review of Problem Solving

1. a.
$$2m + 3d \le 30$$

b.

c. 7 marigolds

2. a.
$$y = -\frac{40}{21} |x - 12.6| + 24$$

b.
$$y = -\frac{40}{21}|x| + 24$$
; 25.2 ft

- **3.** Approximately no correlation; the points show no obvious pattern.
- **4.** Sample answer: y < 3x + 4

5. Yes; all of the ratios of *y* to *x* are constant.

6. a.

b. Sample answer:

$$y = -6.766x + 2193.95$$

c. 1382 daily newspapers

d.

No; the data points seem to be leveling off after 1960 instead of increasing linearly.

7. \$180;

	1	8	0
	\bigcirc	\bigcirc	
\odot	\odot	\odot	0
	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9