Answers for 3.1

For use with pages 156-158

3.1 Skill Practice

- 1. independent
- **2**. The solution is the place(s) where the lines intersect.
- **3.** (1, -1)

4. (-1, -3)

5. (4, -1)

6. (6, -2)

7. (5, 0)

8. (12, 0)

9. (-2, 4)

10. (-6, 5)

11. infinitely many solutions

12. infinitely many solutions

13. $\left(\frac{81}{23}, \frac{51}{23}\right)$

14. (-2, -3)

15. C

16. The solution was not checked in the second equation; $0 + 2(-1) \stackrel{?}{=} 6$, $-2 \neq 6$, (0, -1) is not a solution to the system.

17. (2, -1); consistent and independent

18. (3, 2); consistent and independent

19. no solution; inconsistent

20. infinitely many solutions; consistent and dependent

21. infinitely many solutions; consistent and dependent

22. (5, 4); consistent and independent

23. (2, 0); consistent and independent

24. (-3, 3); consistent and independent

25. (3, -1); consistent and independent

26. (8, -2); consistent and independent

- **27.** infinitely many solutions; consistent and dependent
- **28.** no solution; inconsistent
- **29**. A
- **30. a.** Sample answer: 2x + 3y = 8 4x y = 2
 - **b.** Sample answer: y = 3x 4 y = 3x + 2
 - **c.** Sample answer: x 5y = 102x - 10y = 20
- **31.** no solution

32. (2.5, 1.5)

33. (4, 2) and (-4, 2)

- **34. a.** The values of *a* and *c* must be different. The values of *b* and *d* can be any number.
 - **b.** The values of *a* and *c* must be the same. The values of *b* and *d* must also be the same, but not necessarily the same as the value for *a* and *c*.
 - **c.** The values of *a* and *c* must be the same. The values of *b* and *d* must be different.

3.1 Problem Solving

- **35.** lifeguard: 6 h, cashier: 8 h
- **36.** warnings: 206, speeding tickets: 169
- **37.** 11 days; the number of days will decrease; the number of days will be divided by a larger number, which will decrease the quotient, which is the number of days.

38. a. y = 50x + 600, where x represents the number of years, and y represents the cost; y = 40x + 1200 where x represents the number of years, and y represents the cost.

b.

- **39.** a. m = -0.0958x + 50.8
 - **b.** w = -0.124x + 57.1
 - **c.** in the year 2195
 - **d.** No. *Sample answer:* It is not likely that the same linear models will apply indefinitely.

40. a. d = 5000 - 25t;

- **b.** 15 ft/sec. *Sample answer*: Since we both use the same amount of time and it took me 200 seconds, it also took my friend 200 seconds, so I solved the equation 3000 = 200r.
- **c.** d = 3000 15t;

3.1 Mixed Review

42.
$$-2\frac{1}{3}$$

43.
$$6\frac{1}{2}$$

43.
$$6\frac{1}{2}$$
 44. 27, 9

45.
$$-8\frac{1}{2}$$
, $3\frac{1}{2}$ **46.** $7, \frac{1}{5}$

46.
$$7, \frac{1}{5}$$

47.
$$y = \frac{3}{2}x - 4; -7$$

48.
$$y = 5x - 12; 33$$

49.
$$y = \frac{8}{3}x - \frac{10}{3}$$
; 18

50.
$$y = 4x - \frac{7}{2}$$
; $-7\frac{1}{2}$

51.
$$y = -\frac{16}{9}x - \frac{8}{3}$$
; 8

52.
$$y = \frac{4}{3}x - \frac{20}{3}$$
; -16

53. No; 101°F is equivalent to $38\frac{1}{3}$ °C, so the dog's temperature is normal.