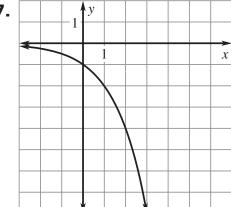
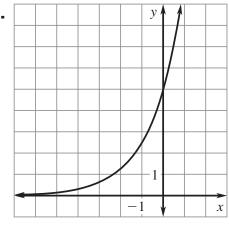
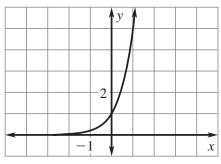
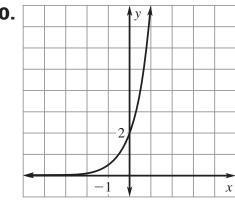

Answers for 7.1

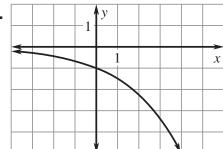

For use with pages 482-485

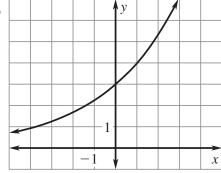
7.1 Skill Practice


- **1.** 2.4, 1.5, 50%
- **2.** An asymptote is a line that a graph approaches very closely but never meets.
- **3.** C
- **4.** A
- **5.** B

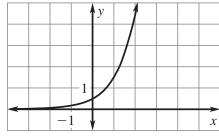


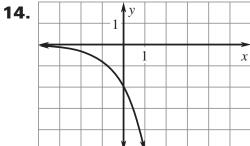

8.

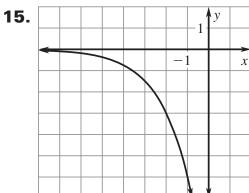

9.


10.

11.

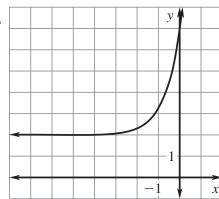

12.

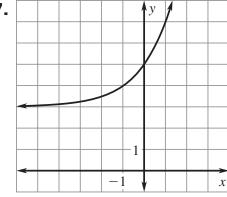



Answers for 7.1 continued

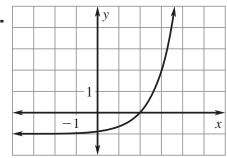
For use with pages 482-485

13.

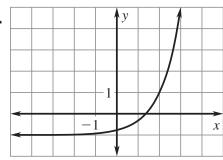



domain: all real numbers, range: y < 0

16.


domain: all real numbers, range: y > 2

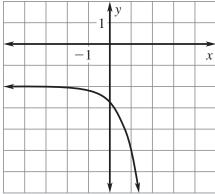
17.


domain: all real numbers, range: y > 3

18.

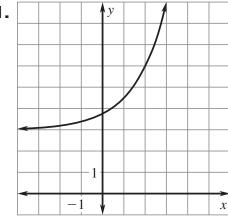
domain: all real numbers, range: y > -1

19.

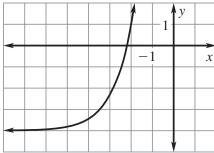


domain: all real numbers, range: y > -1

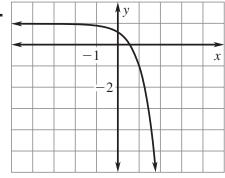
Answers for 7.1 continued


For use with pages 482–485

20.


domain: all real numbers, range: y < -2

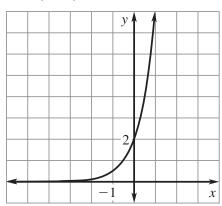
21.


domain: all real numbers, range: y > 3

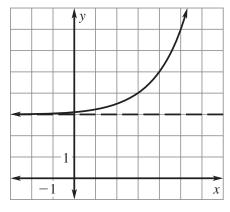
22.

domain: all real numbers, range: y > -4

23.



domain: all real numbers, range: y < 1

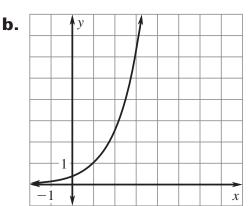

24. B

25. D

26. The *y*-intercept should be (0, 2), not (0, 1).

27. The power of (x - 3) translates the parent graph 3 units to the right, not to the left.

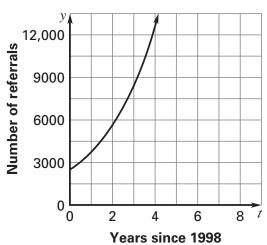
Answers for 7.1 continued


For use with pages 482–485

- **28.** $y = 1219(1.12)^t$, where y represents the number of monk parakeets and t represents the number of years since 1992.
- **29.** $A = 800\left(1 + \frac{0.02}{365}\right)^{365t}$, where *A* represents the amount in the account after *t* years.
- **30.** $y = 450(1.06)^t$, where y represents the value of the table after t years.
- **31. a.** \$1844.81
 - **b.** 18 yr
- **32.** *Sample answer:* $y = 9 \cdot 3^{x-1} + 2$
- **33. a.** The graph no longer has a vertical stretch of 2.
 - **b.** The graph will increase slower.
 - **c.** The graph will be translated 3 units to the right instead of 4 units to the left.
 - d. The graph will be translated 1 unit down instead of 3 units up.

- **34.** a. $\frac{ab^{x+1}}{ab^x} = \frac{b^x b^1}{b^x} = b$
 - **b.** Sample answer: Since the points (0, 4) and (1, 4) are of the form f(x) and f(x + 1), when f(x) and f(x + 1) are substituted into the equation from part (a), b = 1 and therefore the function is no longer exponential.

7.1 Problem Solving


35. a. 0.42 million, 2.47, 147%

about 16 million DVD players

36. a. 2500, 1.50, 50%

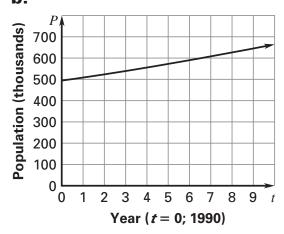
b.

domain: $t \ge 0$, range: $y \ge 2500$; about 13,000 referrals

37. a. \$2479.38

b. \$2406.98

c. \$2383.23


38. a. \$2804.71

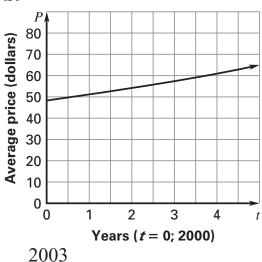
b. \$2701.39

c. \$2666.99

39. a. $P = 494.29(1.03)^t$; 664,284 people

b.

domain: $t \ge 0$, range: $P \ge 494.29$

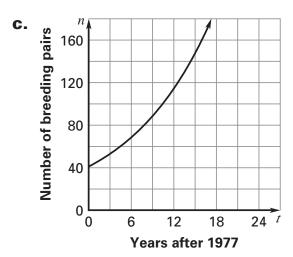

c. 1996

40. a. $p = 50(1.105)^n$

b. \$82.37; \$1,084,420.72; no. *Sample answer:* This amount is unreasonable because the model is only defined for 6 bids and 100 is out of this domain.

41. a.
$$p = 48.28(1.06)^t$$

b.



c. Sample answer: Since the function is only defined when t is between 0 and 4, you can look at the graph between these values to determine the minimum or maximum that gives meaningful results.

42. a.
$$n = 41(1.089)^t$$

b.

t	n
0	41
8	81.097
24	317.29

- **d.** about 317 breeding pairs
- **43.** No. *Sample answer:* The initial amount is all that is equivalent. The first \$6000 amount grows at a faster rate.

7.1 Mixed Review

49.
$$\frac{1}{16}$$

50.
$$\frac{27}{512}$$

51.
$$\frac{16,807}{100,000}$$

52.
$$\frac{64}{125}$$

53.
$$(x + 10)(x - 3)$$

54.
$$(x + 9)(x + 6)$$

55.
$$(2x + 5)(x - 6)$$

57.
$$(x^2-3)(x-2)$$

58.
$$(x-4)(x^2+4x+16)$$

- **59.** 5
- **60.** 7
- **61.** $\sqrt[7]{-72}$
- **62.** $-12 \pm \sqrt[4]{52}$
- **63.** $\pm \sqrt[6]{200}$
- **64.** $9 \pm \sqrt[8]{17}$