- 1. common ratio
- **2.** When you divide consecutive terms you have the same ratio.
- **3.** Not geometric; there is no common ratio.
- **4.** Geometric; there is a common ratio of 4.
- **5.** Geometric; there is a common ratio of $\frac{1}{6}$.
- **6.** Geometric; there is a common ratio of 2.
- **7.** Not geometric; there is no common ratio.
- **8.** Not geometric; there is no common ratio.
- **9.** Geometric; there is a common ratio of $\frac{1}{2}$.
- **10.** Not geometric; there is no common ratio.
- **11.** Geometric; there is a common ratio of -3.
- **12.** Geometric; there is a common ratio of 3.
- **13.** Not geometric; there is no common ratio.

14. Not geometric; there is no common ratio.

15.
$$a_n = (-4)^{n-1}$$
; 4096

16.
$$a_n = 6(3)^{n-1}$$
; 4374

17.
$$a_n = 4(6)^{n-1}$$
; 186,624

18.
$$a_n = 7(-5)^{n-1}$$
; 109,375

19.
$$a_n = 2\left(\frac{3}{4}\right)^{n-1}; \frac{729}{2048}$$

20.
$$a_n = 3\left(-\frac{2}{5}\right)^{n-1}; \frac{192}{15,625}$$

21.
$$a_n = 4\left(\frac{1}{2}\right)^{n-1}; \frac{1}{16}$$

22.
$$a_n = -0.3(-2)^{n-1}$$
; -19.2

23.
$$a_n = -2(0.4)^{n-1}; -0.008192$$

24.
$$a_n = 7(-0.6)^{n-1}$$
; 0.326592

25.
$$a_n = 5(-2.8)^{n-1}$$
; 2409.45152

26.
$$a_n = 120(1.5)^{n-1}$$
; 1366.875

28.
$$a_n = 5(3)^{n-1}$$

Answers for 12.3 continued

For use with pages 814–818

29.
$$a_n = -2(6)^{n-1}$$

30.
$$a_n = 3(2)^{n-1}$$

31.
$$a_n = 30\left(\frac{1}{2}\right)^{n-1}$$

32.
$$a_n = 4096 \left(\frac{1}{8}\right)^{n-1}$$

34.
$$a_n = 3(5)^{n-1}$$

35.
$$a_n = 2(4)^{n-1}$$

36.
$$a_n = 4(5)^{n-1}$$

- **37.** The exponent should be n-1instead of *n*; $a_n = 3(2)^{n-1}$.
- **38.** r and a_1 are switched around in the formula; $a_n = a_1 r^{n-1}$,

$$a_n = 3(2)^{n-1}$$
.

39.
$$a_n = 3(2)^{n-1}$$

40. $a_n = 1(5)^{n-1}$

40.
$$a_n = 1(5)^{n-1}$$

41.
$$a_n = \left(-\frac{1}{4}\right)(4)^{n-1}$$

Answer Transparencies for Checking Homework

Answers for 12.3 continued

For use with pages 814-818

42.
$$a_n = \left(\frac{10}{9}\right)(3)^{n-1}$$

43.
$$a_n = -80\left(\frac{1}{2}\right)^{n-1}$$

44.
$$a_n = 6(-4)^{n-1}$$

45.
$$a_n = 6(3)^{n-1}$$

46.
$$a_n = 7\left(\frac{1}{2}\right)^{n-1}$$

47.
$$a_n = \frac{32}{27} \left(\frac{3\sqrt[3]{12}}{4} \right)^{n-1}$$

- **48.** 5115
- **49.** 131,070
- **50.** $\frac{255}{32}$ **51.** $\frac{1365}{256}$
- **52.** $\frac{527,345}{256}$ **53.** 838,861
- **54**. C
- **55.** *Sample answer:*

$$\frac{100}{31}$$
, $\frac{200}{31}$, $\frac{400}{31}$, $\frac{800}{31}$, $\frac{1600}{31}$

56. a.
$$S_5 = \left(\frac{1-x^5}{1-x}\right)$$

b.
$$S_4 = 3x \left(\frac{1 - 16x^8}{1 - 2x^2} \right)$$

12.3 Problem Solving

57. a.
$$a_n = 5(2)^{n-1}$$

58. a.
$$a_n = 32\left(\frac{1}{2}\right)^{n-1}$$
; $1 \le n \le 6$

59. a.
$$a_n = 1024 \left(\frac{1}{2}\right)^{n-1}$$

- **b.** 11. Sample answer: On the 11th pass, there is only 1 term to choose from so it must be the answer.
- **60. a.** $a_n = (8)^{n-1}$; 2,396,745 squares

b.
$$a_n = \frac{8}{9} \left(\frac{8}{9}\right)^{n-1}$$
; about 0.2433

61. a. $a_n = 19,000 + 1000n$, arithmetic; $b_n = 20,000(1.04)^{n-1},$ geometric

- **c.** Company A: \$590,000; Company B: about \$595,562
- **d.** 19 yr
- **62.** \$139,521.58

12.3 Mixed Review

63.

64.

65.

66.
$$-\frac{5}{9}$$

67.
$$\frac{7}{10}$$

68.
$$\frac{8}{13}$$

12.1–12.3 Mixed Review of Problem Solving

1. a.
$$a_n = 45,000(1.035)^{n-1}$$

2. a.
$$a_n = (2n-1)\pi$$

b.
$$\sum_{i=2}^{n} (2i-1)\pi$$

c.
$$\pi$$
, 4π , 16π ; it quadruples the area.

- **3.** 2 + 4n; arranging the tables with their short ends together creates room for 4 more chairs with each table that is added, where arranging the tables with their long ends together creates room for 2 more chairs with each table that is added.
- **4.** Sample answer: $\sum_{i=1}^{8} \frac{19}{14} + \frac{23}{14}i$
- **5.** 105 pieces of chalk;

	1	0	5
	\bigcirc	\bigcirc	
\odot	\odot	\odot	\odot
	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

6.
$$a_n = 2 + 7n$$
; 72 in.; change the formula to be $a_n = 2 + 7(n - 1)$

7. a. Geometric; there is a constant ratio of $\frac{1}{2}$ between terms.

b.
$$a_n = 66 \left(\frac{1}{2}\right)^{n-1}$$

exponential decay

- **d.** 14 h
- **8.** *Sample answer:* 3, 6, 9, 12, 15;

$$\frac{45}{31}$$
, $\frac{90}{31}$, $\frac{180}{31}$, $\frac{360}{31}$, $\frac{720}{31}$