- **1.** iteration
- **2.** An explicit rule gives the value based on the position of the term in the sequence while a recursive rule gives the value based on previous term(s) in the sequence.
- **3.** 1, 4, 7, 10, 13
- **4.** 4, 8, 16, 32, 64
- **5.** -1, -6, -11, -16, -21
- **6.** 3, 2, -2, -11, -27
- **7.** 2, 5, 26, 677, 458,330
- **8.** 4, 6, 26, 666, 443,546
- **9.** 2, 8, 10, 18, 22
- **10.** 2, 4, 2, -2, -4
- **11.** 2, 3, 6, 18, 108
- **12**. A
- **13.** $a_1 = 21, a_n = a_{n-1} 7$
- **14.** $a_1 = 3, a_n = 4a_{n-1}$
- **15.** $a_1 = 4$, $a_n = -3a_{n-1}$
- **16.** $a_1 = 1, a_n = a_{n-1} + 7$
- **17.** $a_1 = 44, a_n = \frac{1}{4}a_{n-1}$
- **18.** $a_1 = 1, a_2 = 4,$ $a_n = a_{n-2} + a_{n-1}$
- **19.** $a_1 = 54$, $a_n = a_{n-1} 11$

20.
$$a_1 = 3, a_2 = 5,$$
 $a_n = a_{n-2} \cdot a_{n-1}$

- **21.** $a_1 = 16, a_2 = 9,$ $a_n = a_{n-2} - a_{n-1}$
- **22.** When writing a recursive rule, you must define the previous information needed; $a_1 = 5$, $a_2 = 2, a_n = a_{n-2} - a_{n-1}$
- **23.** The rule does not work for all of the terms of the sequence; $a_1 = 5$, $a_2 = 2, a_n = a_{n-2} - a_{n-1}.$
- **24.** 4, 10, 28 **25.** -4, -14, -64
- **26.** 3, -5, 27 **27.** -2, -4, -5
- **28.** 9, 11, $12\frac{1}{3}$ **29.** 5, 21, 437
- **30.** 3, 19, 723 **31.** 2, 4, 14
- **32.** -8, -208, -130,208
- **33**. C
- **34.** $a_1 = 3, a_2 = 8,$ $a_n = (a_{n-2})^2 + a_{n-1}$
- **35.** $a_1 = 1, a_2 = 2,$ $a_n = 4(a_{n-2} + a_{n-1})$
- **36.** $a_1 = 5, a_n = \sqrt{3} a_{n-1}$
- **37.** $a_1 = 2, a_2 = 5,$ $a_n = 3a_{n-2} + a_{n-1}$
- **38.** $a_1 = 8$, $a_2 = 4$, $a_n = \frac{a_{n-2}}{a_{n-1}}$

- **39.** $a_1 = -3$, $a_2 = -2$, $a_n = -1(a_{n-2} + a_{n-1})$
- **40.** Sample answer: $a_1 = 2$, $a_2 = 4$, $a_3 = 7$, $a_n = a_{n-3} + a_{n-2} + a_{n-1}$, $a_n = a_{n-3} + a_{n-2} + a_{n-1} + a_{n-1}$, $a_n = a_{n-3} + a_{n-2} + a_{n-1} + a_{n-1} + a_{n-2} + a_{n-1} + a_{n-1} + a_{n-2} +$
- **41.** *Sample answer:* If the first two iterates are 2, the given rule must not be a function.
- **42. a.** 5, 18, 9, 30, 15, 48, 24, 12, 6, 3
 - **b.** Sample answer: $a_1 = 2: 2, 1, 6, 3, 12, 6, 3, 12, 6, 3;$ $a_1 = 3: 3, 12, 6, 3, 12, 6, 3, 12, 6, 3;$ $a_1 = 6: 6, 3, 12, 6, 3, 12, 6, 3, 12, 6, 3, 12, 6;$ the terms of the sequence will eventually repeat the numbers 3, 6, 12.

12.5 Problem Solving

- **43. a.** $a_1 = 5000$, $a_n = 0.8a_{n-1} + 500$; 3524 fish
 - **b.** The population of the lake approaches 2500 fish.
- **44.** $a_1 = 34$, $a_n = 0.6a_{n-1} + 16$; the amount of chlorine in the pool approaches 40 ounces.

45. $a_1 = 2000$, $a_n = 1.014a_{n-1} - 100$; 24 mo.

Sample answer: As long as Gladys does not add anything to her credit card and continues her payments, her 24th payment will only be \$62.14.

- **46.** 1, 1, 2, 3, 5
- **47. a.** $a_1 = 20, a_n = 0.7a_{n-1} + 20$
 - **b.** $66\frac{2}{3}$ mg
 - **c.** The maintenance level of the drug doubles as well; $a_1 = 20$, $a_n = 0.7 (2a_{n-1}) + 2(20)$.
- **48 a.** $a_n = 1.08a_{n-1} 30{,}000$
 - **b.** $a_{n-1} = \frac{a_n + 30,000}{1.08};$
 - a_0 = about 294,544.42

12.5 Mixed Review

- **49.** $3\sqrt{2}$ **50.** $2\sqrt{14}$
- **52.** 64 **53.** 9 **54.** $\frac{1}{8}$

12.4–12.5 Mixed Review of Problem Solving

- **1. a.** $\sum_{i=1}^{\infty} 16.8(0.7)^{i-1}$
 - **b.** 68 ft

- **2. a.** 1, 2, 4, 8, 16, 32
 - **b.** geometric
 - **c.** $a_n = 2^{n-1}$ and $a_1 = 1$, $a_n = 2a_{n-1}$
- **3.** 60;

		6	0
	0	0	
•	\odot	\odot	\odot
	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	(5)
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

- **4.** Sample answer: $a_n = -2 + 5n$ and $a_1 = 3$, $a_n = a_{n-1} + 5$
- **5.** Sample answer: The sum continues to grow larger because the terms of the sequence are constantly growing larger and never approach any specific value.
- **6.** Finite; the common ratio is less than 1; 160 in.

- **7. a.** 0.54%; $a_1 = 10,000$, $a_n = 1.0054a_{n-1} 196$
 - **b.** \$8244.47
 - c. 47 months
 - **d.** Sample answer: Yes; by paying an extra \$50 each month, you are paying the loan off early and therefore will pay less interest.
- **8.** 5000 trees;

1					
	5	0	0	0	
		\bigcirc	\bigcirc		
	\odot	O	O	0	
		0	0	0	
	1	1	1	1	
	2	2	2	2	
	3	3	3	3	
	4	4	4	4	
	5	(5)	(5)	(5)	
	6	6	6	6	
	7	7	7	7	
	8	8	8	8	
	9	9	9	9	

9. Sample answer: $\sum_{i=1}^{\infty} 2\left(\frac{1}{2}\right)^{i-1}$