@HomeTutor classzone.com Keystrokes

2.7 Exploring Transformations

MATERIALS • graphing calculator

QUESTION

How are the equation and the graph of an absolute value function related?

You can investigate families of absolute value functions with equations of the form y = a|x - h| + k by varying the values of a, h, and k and then graphing. The resulting graphs are *transformations* of the graph of the parent function y = |x|.

EXAMPLE 1 Graph y = |x| + k

Graph and describe the family of absolute value functions of the form y = |x| + k.

STEP 1 Vary the value of k

Enter
$$y = |x|, y = |x| + 2,$$

 $y = |x| + 5,$ and $y = |x| - 3.$

Y1 abs(X) Y2=abs(X)+2 Y3=abs(X)+5 Y4 abs(X)-3 Y6=

STEP 2 Display graphs

Graph the equations in the standard viewing window by pressing ZOOM 6.

STEP 3 Compare graphs

Describe how the family of graphs of y = |x| + k is related to the graph of v = |x|.

The graphs of absolute value functions of the form y = |x| + k have the same shape as the graph of y = |x|, but are shifted k units vertically.

EXAMPLE 2 Graph y = |x - h|

Graph and describe the family of absolute value functions of the form y = |x - h|.

STEP 1 Vary the value of h

Enter
$$y = |x|, y = |x - 2|,$$

 $y = |x - 4|, \text{ and } y = |x + 5|.$

STEP 2 Display graphs

Graph the equations in the standard viewing window by pressing ZOOM 6.

STEP 3 Compare graphs

Describe how the family of graphs of y = |x - h| is related to the graph of y = |x|.

The graphs of absolute value functions of the form y = |x - h| have the same shape as the graph of y = |x|, but are shifted h units horizontally.

121

2.7 Use Absolute Value Functions and Transformations

OPLAN AND PREPARE

Explore the Concept

- · Students will explore transformations of the graph of y = |x|.
- · This activity leads into the study of deriving new absolute value functions from the parent graph in Examples 1–3 in Lesson 2.7.

Materials

Each student will need a graphing calculator.

Recommended Time

Work activity: 10 min Discuss results: 5 min

Grouping

Students can work individually or in pairs. If students work in pairs, they can take turns graphing the equations.

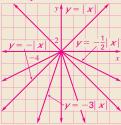
TEACH

Tips for Success

Make sure students know how to find the "abs" notation on their calculators and remember to enclose xin parentheses when entering an equation of the form y = |x| + kin their graphing calculator.

Key Questions

- When is the graph of v = |x| + kshifted upward from the graph of y = |x|? when k > 0
- When is the graph of v = |x h|shifted to the left of the graph of y = |x|? when h < 0


Key Discovery

The graphs of y = |x| + k, y = |x - h| and y = a|x - h| + kare transformations of the graph of v = |x|.

3ASSESS AND RETEACH

- **1.** What is the value of a when the graph of y = a|x h| + k has the same shape as the graph of y = |x|?
- **2.** What is the value of a when the graph of y = a|x| is a reflection in the x-axis of the graph of y = |x|? -1

1. Step 2:

Step 3: When a < 0, y = a|x| has its highest point at the origin. If -1 < a < 0, the graph is wider than y = |x|. If a < -1, the graph is narrower than y = |x|.

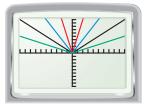
2–10. See Additional Answers beginning on p. AA1.

13. If a < 0, then the graph is reflected over the x-axis. If -1 < a < 1, then the graph is wider than y = |x|. If a < -1 or a > 1, then the graph is narrower than y = |x|.

14. (h, k); if a < 0 it is the highest point and if a > 0 it is the lowest point.

EXAMPLE 3 Graph y = a|x| where a is a positive number

Graph and describe the family of absolute value functions of the form y = a|x| where a > 0.


STEP 1 Vary the value of a

Enter
$$y = |x|, y = 2|x|, y = 5|x|,$$

and $y = \frac{1}{2}|x|.$

STEP 2 Display graphs

Graph the equations in the standard viewing window by pressing ZOOM 6.

STEP 3 Compare graphs

Describe how the family of graphs of y = a|x| where a > 0 is related to the graph of y = |x|.

As with y = |x|, the graph of y = a|x| (a > 0) has its lowest point at the origin. If a > 1, the graph is narrower than that of y = |x|. If 0 < a < 1, the graph is wider than that of y = |x|.

PRACTICE

- 1. Graph and describe the family of absolute value functions of the form y = a|x| where a < 0. Follow these steps:
 - **STEP 1** Enter y = |x|, y = -|x|, y = -3|x|, and $y = -\frac{1}{2}|x|$. Check students' work.
 - **STEP 2** Graph the equations in the standard viewing window by pressing **ZOOM** 6. See margin.
 - **STEP 3** Describe how the family of graphs of y = a|x| where a < 0 is related to the graph of y = |x|. See margin.

Describe how the graph of the given equation is related to the graph of y = |x|. Then graph the given equation along with y = |x| to confirm your answer. 2–10. See margin for art.

2.
$$y = |x| + 6$$

translated up 6 units
5. $y = |x + 2|$
translated left 2 units
8. $y = |x - 1| + 2$
translated up 2 units
and right 1 unit

3.
$$y = |x| - 4$$

translated down 4 units
6. $y = \frac{2}{3}|x|$
wider than $y = |x|$
9. $y = 3|x + 2|$
narrower that $y = |x|$
and translated left 2 units

4.
$$y=|x-3|$$
 translated right 3 units
7. $y=-6|x|$ reflected over *x*-axis and narrower than $y=|x|$
10. $y=-0.5|x+1|+7$ reflected over the *x*-axis and wider than $y=|x|$, translated left 1 unit and up 7 units

DRAW CONCLUSIONS

Answer the following questions about the graph of y = a|x - h| + k.

- 11. How does the value of k affect the graph? shifts the graph vertically
- 12. How does the value of h affect the graph? shifts the graph horizontally
- 13. How do the sign and absolute value of a affect the graph? See margin.
- 14. What are the coordinates of the lowest or highest point on the graph? How can you tell whether this point is the lowest point or the highest point? See margin.
- 122 Chapter 2 Linear Equations and Functions