CHAPTER REVIEW

@HomeTutor

classzone.com

- Multi-Language Glossary
- Vocabulary practice

REVIEW KEY VOCABULARY

- distance formula, p. 614
- midpoint formula, p. 615
- focus, foci, pp. 620, 634, 642
- directrix, p. 620
- circle, p. 626
- center, pp. 626, 634, 642
- radius, p. 626

- ellipse, p. 634
- vertices, pp. 634, 642
- major axis, p. 634
- co-vertices, p. 634
- minor axis, p. 634
- hyperbola, p. 642
- transverse axis, p. 642
- conic sections, p. 650
- general second-degree equation, p. 653
- discriminant, p. 653
- quadratic system, p. 658

VOCABULARY EXERCISES

- 1. Copy and complete: A(n) _? is the set of all points in a plane equidistant from a point called the focus and a line called the directrix. parabola
- 2. Copy and complete: The line segment joining the two co-vertices of an ellipse is the _? . minor axis
- **3.** Copy and complete: The line segment joining the two vertices of a hyperbola is the <u>?</u>. **transverse axis**
- 4. WRITING Describe how the asymptotes of a hyperbola help you draw the hyperbola. The asymptotes indicate how wide or narrow the hyperbola is.

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 9.

9.1

EXAMPLES

for Exs. 5-8

on pp. 614-615

1 and 3

Apply the Distance and Midpoint Formulas

рр. 614-619

EXAMPLE

Find the distance between (-5,3) and (1,-3). Then find the midpoint of the line segment joining the two points.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(1 - (-5))^2 + (-3 - 3)^2} = \sqrt{72} = 6\sqrt{2} \approx 8.49$$

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \left(\frac{-5+1}{2}, \frac{3+(-3)}{2}\right) = (-2, 0)$$

EXERCISES

Find the distance between the two points. Then find the midpoint of the line segment joining the two points.

5.
$$(-6, -5), (2, -3)$$

 $2\sqrt{17}; (-2, -4)$

6.
$$(-2, 5), (1, 9)$$
 5; $\left(-\frac{1}{2}, 7\right)$

7.
$$(-3, -4), (2, 5)$$

 $\sqrt{106}; \left(-\frac{1}{2}, \frac{1}{2}\right)$

8. **SKYDIVING** A skydiver lands 200 yards west and 40 yards north of a target. A second skydiver lands 30 yards east and 140 yards south of the same target. How far from each other do the two skydivers land? **about 292 yd**

Chapter Review

669

Extra Example 9.1

Find the distance between (-4, 1) and (5, -7). Then find the midpoint of the line segment joining the two points. **distance**: $\sqrt{145}$;

midpoint:
$$\left(\frac{1}{2}, -3\right)$$

Extra Example 9.2

Graph $x^2 = -20 \mu$ Identify the focus, directrix, and axis of symmetry.

focus: (0, -5), directrix: y = 5, axis of symmetry: x = 0

Extra Example 9.3

Graph $y^2 = 625 - x^2$. Identify the radius. r = 25

HAPTER REVIEW

Graph and Write Equations of Parabolas

pp. 620-625

EXAMPLE

Graph $x = \frac{1}{12}y^2$. Identify the focus, directrix, and axis of symmetry.

STEP 1 Rewrite
$$x = \frac{1}{12}y^2$$
 in standard form as $y^2 = 12x$.

EXERCISES

EXAMPLES 1 and 2

on p. 621 for Exs. 9-14 Graph the equation. Identify the focus, directrix, and axis of symmetry of the parabola. 9-11. See margin for art.

9.
$$x^2 = 16y$$
 (0, 4), $y = -4$, $x = 0$ 10. $y^2 = -6x\left(-\frac{3}{2}, 0\right)$, $x = \frac{3}{2}$, $y = 0$ 11. $x^2 + 4y = 0$ (0, -1), $y = 1$, $x = 0$

Write the standard form of the equation of the parabola with the given focus or directrix and vertex at (0, 0).

12. Focus:
$$(-5, 0)$$
 $y^2 = -20x$ 13. Focus: $(0, 3)$ $x^2 = 12y$

14. Directrix:
$$x = -6$$

Graph and Write Equations of Circles

pp. 626-632

EXAMPLE

Graph $x^2 = 64 - y^2$. Identify the radius of the circle.

STEP 1 Rewrite
$$x^2 = 64 - y^2$$
 in standard form as $x^2 + y^2 = 64$.

STEP 2 Identify the radius. The graph is a circle with center at the origin and radius
$$r = \sqrt{64} = 8$$
.

EXERCISES

EXAMPLES 1 and 2

on pp. 626-627 for Exs. 15-20

Graph the equation. Identify the radius of the circle.
$$15-17$$
. See margin for art.

15. $x^2 + y^2 = 81$ **9**

16.
$$x^2 = 40 - y^2$$
 2 $\sqrt{10}$

17.
$$3x^2 + 3y^2 = 147$$
 7

Write the standard form of the equation of the circle that passes through the given point and whose center is the origin.

18.
$$(5, 9)$$
 $x^2 + y^2 = 106$

19.
$$(-8, 2)$$
 $x^2 + v^2 = 68$

19.
$$(-8, 2)$$
 $\chi^2 + \nu^2 = 68$ 20. $(-7, -4)$ $\chi^2 + \nu^2 = 65$

670 Chapter 9 Quadratic Relations and Conic Sections

Graph and Write Equations of Ellipses

pp. 634-639

EXAMPLE

Graph $4x^2 + y^2 = 16$. Identify the vertices, co-vertices, and foci.

STEP 1 Rewrite
$$4x^2 + y^2 = 16$$
 in standard form as $\frac{x^2}{4} + \frac{y^2}{16} = 1$.

STEP 2 Identify the vertices, co-vertices, and foci. Note that
$$a^2 = 16$$
 and $b^2 = 4$, so $a = 4$, $b = 2$, and $c^2 = a^2 - b^2 = 12$, or $c \approx 3.5$. The major axis is vertical. The vertices are at $(0, \pm 4)$. The co-vertices are at $(\pm 2, 0)$. The foci are at $(0, \pm 3.5)$.

STEP 3 Draw the ellipse.

EXERCISES

EXAMPLES

1, 2, and 4

for Exs. 21-25

on pp. 635-636

21-23. See margin for art.

Graph the equation. Identify the vertices, co-vertices, and foci of the ellipse.

21.
$$16x^2 + 25y^2 = 400$$
 (±5, 0), (0, ±4), (±3, 0)

22.
$$81x^2 + 9y^2 = 729$$
 $(0, \pm 9), (\pm 3, 0), (0, \pm 6\sqrt{2})$

23.
$$64x^2 + 36y^2 = 2304$$

 $(\pm 5,0), (0,\pm 4), (\pm 3,0) \qquad (0,\pm 9), (\pm 3,0), (0,\pm 6\sqrt{2}) \qquad (0,\pm 8), (\pm 6,0), (0,\pm 2\sqrt{7})$ Write an equation of the ellipse with the given characteristics and center at (0,0).

24. Vertex: (-6, 0); co-vertex: (0, -3)
$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$

$$\frac{x^2}{26} + \frac{y^2}{9} = 1$$

$$\frac{v^2}{64} + \frac{x^2}{39} = 1$$

Graph and Write Equations of Hyperbolas

pp. 642-648

EXAMPLE

Graph $4x^2 - 9y^2 = 36$. Identify the vertices, foci, and asymptotes.

STEP 1 Rewrite
$$4x^2 - 9y^2 = 36$$
 in standard form as $\frac{x^2}{9} - \frac{y^2}{4} = 1$.

STEP 3 Draw asymptotes through opposite corners of a rectangle centered at (0, 0) that is 2a = 6 units wide and 2b = 4 units high. Draw the hyperbola.

EXERCISES

Graph the equation. Identify the vertices, foci, and asymptotes. 26-28. See margin for art.

26.
$$9x^2 - y^2 = 9$$

27.
$$4x^2 - 16y^2 = 64$$

28.
$$100y^2 - 36x^2 = 3600$$

26.
$$9x^2 - y^2 = 9$$
 27. $4x^2 - 16y^2 = 64$ 28. $100y^2 - 36x^2 = 3600$ $(\pm 1, 0), (\pm \sqrt{10}, 0), y = \pm 3x$ $(\pm 4, 0), (\pm 2\sqrt{5}, 0), y = \pm \frac{1}{2}x$ $(0, \pm 6), (0, \pm 2\sqrt{34}), y = \pm \frac{3}{5}x$ Write an equation of the hyperbola with the given foci and vertices.

29. Foci: $(0, \pm 5)$; vertices: $(0, \pm 2)$ $\frac{y^2}{4} - \frac{x^2}{21} = 1$ 30. Foci: $(\pm 9, 0)$; vertices: $(\pm 4, 0)$ $\frac{x^2}{16} - \frac{y^2}{65} = 1$

Chapter Review 671

21.

Extra Example 9.4

Graph $9x^2 + y^2 = 9$. Identify the vertices, co-vertices, and foci.

vertices: (0, -3) and (0, 3), co-vertices: (-1, 0) and (1, 0), foci: $(0, -2\sqrt{2})$ and $(0, 2\sqrt{2})$

Extra Example 9.5

Graph $9x^2 - y^2 = 225$. Identify the vertices, foci, and asymptotes.

vertices: (-5, 0) and (5, 0); foci: (-10, 0) and (10, 0), asymptotes: $y = \pm 3$

EXAMPLES

1 and 2 on p. 643 for Exs. 26-30

Extra Example 9.6

Classify the conic section x^2 + $16v^2 + 4x - 96v + 132 = 0$ and write its equation in standard form. Then graph the equation.

ellipse;
$$\frac{(x+2)^2}{16} + (y-3)^2 = 1$$

Extra Example 9.7

Solve the system. $x^2 + y^2 = 36$ $3x^2 - y^2 - 28 = 0$ $(-4, -2\sqrt{5}),$ $(-4, 2\sqrt{5}), (4, -2\sqrt{5}), (4, 2\sqrt{5})$

31. ellipse,
$$\frac{(x+5)^2}{9} + \frac{(y+4)^2}{4} = 1$$

APTER REVIEW

9.6 **Translate and Classify Conic Sections**

pp. 650-657

EXAMPLE

Classify the conic section $-4x^2 + y^2 + 32x - 12y - 32 = 0$ and write its equation in standard form. Then graph the equation.

Because A = -4, B = 0, and C = 1, the discriminant is $B^2 - 4AC = 16 > 0$, so the conic is a hyperbola. Complete the square to write the equation in standard form.

$$-4x^{2} + y^{2} + 32x - 12y - 32 = 0$$

$$(y^{2} - 12y) - 4(x^{2} - 8x) = 32$$

$$(y^{2} - 12y + 36) - 4(x^{2} - 8x + 16) = 32 + 36 - 4(16)$$

$$(y - 6)^{2} - 4(x - 4)^{2} = 4$$

$$\frac{(y - 6)^{2}}{4} - (x - 4)^{2} = 1$$

From the equation, (h, k) = (4, 6), $a = \sqrt{4} = 2$, and b = 1. The vertices are (4, 6 + 2) = (4, 8) and (4, 6 - 2) = (4, 4). The graph is shown above.

EXAMPLE 6 on p. 653 for Exs. 31-34 Classify the conic section and write its equation in standard form. Then graph the equation. 31–34. See margin for art.

31.
$$4x^2 + 9y^2 + 40x + 72y + 208 = 0$$
 See margin.
33. $9x^2 - y^2 - 18x - 4y - 5 = 0$ $(y - 1)^2$ $\frac{10}{2}$ $-\frac{(y + 2)^2}{10} = 1$ circle, $(x + 2)^2 + (y - 7)^2 = 36$

Solve Quadratic Systems

pp. 658-664

EXAMPLE

Solve the system. $12x^2 - 81y^2 + 16 = 0$ $2x^2 + 9y = 0$

Write the second equation as $y = -\frac{2}{6}x^2$. Then substitute in the first equation.

$$12x^2 - 81\left(-\frac{2}{9}x^2\right)^2 + 16 = 0$$
 Substitute for y in first equation.
$$12x^2 - 4x^4 + 16 = 0$$
 Simplify.
$$x^4 - 3x^2 - 4 = 0$$
 Divide each side by -4 .
$$(x^2 - 4)(x^2 + 1) = 0$$
 Factor.

By the zero product property, $x = \pm 2$. The solutions are $\left(2, -\frac{8}{9}\right)$ and $\left(-2, -\frac{8}{9}\right)$.

EXERCISES

EXAMPLES 2 and 3

on pp. 659-660 for Exs. 35-37

35.
$$y^2 = 4x$$

 $2x - 5y = -8$ **(16, 8), (1, 2**

36.
$$x^2 + y^2 - 100 = 0$$

$$y^2 = 4x$$
 36. $x^2 + y^2 - 100 = 0$ 37. $16x^2 - 4y^2 = 64$ $2x - 5y = -8$ (16, 8), (1, 2) $x + y - 14 = 0$ (8, 6), (6, 8) $4x^2 + 9y^2 - 40x = -64$ (2, 0)

Chapter 9 Quadratic Relations and Conic Sections

Chapter Test, p. 673

